Tough, Ductile High-Temperature Intermetallic Compounds: Results of a Four-Year Survey.

Author:

Fleischer R.L.,Briant C.L.,Field R.D.

Abstract

ABSTRACTA four-year survey of high-temperature intermetallic compounds has been aimed at identifying potentially useful structural materials for aerospace and aircraft engine applications. Since the good properties of high strength and stiffness at high temperatures are typically negated by brittleness at ambient temperature, new materials must have roomtemperature toughness or ductility. Screening has been done of 90 binary compounds with 20 different crystal structures, and 130 ternary or higher-order alloys. Testing typically included hardness vs. temperature, elastic modulus determination, and toughness evaluation via a room-temperature chisel test. Four alloy systems, including only two types that are of the simplest structures, showed substantial room-temperature toughness: Al-Ru, Ru-Sc, Ir-Nb, and Ru-Ta. Of these the last and the first are the most promising. Special features of the Ru- Ta (L1o) alloys are their room-temperature impact resistance and high-temperature strength. AIRu (B2) alloys can be tougher than the L1o structures and most are also ductile in compression at room temperature. Alloying experiments with B, Cr, and Sc show beneficial effects on ductility, oxidation resistance, and high-temperature strength.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference16 articles.

1. Grain boundary segregation of boron and sulfur and its effect on ductility in rapidly solidified Ni-base L12 compounds

2. Mechanical properties of high-temperature titanium intermetallic compounds

3. 5. Fleischer R.L. and Field R.D. , “Development Potential of Advanced Intermetallic Materials,” Final Report to U.S. Air Force, Aeronautical Systems Div., Wright-Patterson Air Force Base Contract F33615–86-C-5055, 410 pages. Report WRDC-TR-90–4046, June 1990.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3