Microstructure and ambient properties of a Sialon composite prepared by hot pressing and reactive sintering of β–Si3N4 coated with Al2O3

Author:

Ghosh G.,Vaynman S.,Fine M. E.,Hsu S. M.

Abstract

A composite microstructure, consisting of β-Sialon, O-Sialon, and X-Sialon phases was produced by coating β–Si3N4 particles with amorphous alumina followed by hot pressing and reactive sintering at 1923 K. The particle coating procedure was selected over conventional powder blending in order to promote heterogeneous nucleation of β-Sialon grains on β–Si3N4 particles uniformly. The microstructure, chemistry of the phases, and interphase interfaces of this ceramic were characterized by transmission electron microscopy (TEM) and high-resolution analytical electron microscopy (AEM). Both electron energy-loss spectroscopy (EELS) and energy-dispersive spectroscopy (EDS) x-ray microanalysis in AEM revealed that b-Sialon grains had varying aluminum and oxygen contents. High-resolution electron microscopy (HREM) examination of several interphase interfaces and triple junctions suggests that the amount of glassy phase in the produced ceramic is substantially lower compared to those reported in the literature. This is of importance of high temperature properties. The fracture toughness and wear properties were evaluated at room temperature. Available data indicate that the fracture toughness and wear of β-Sialon composite can be significantly improved by the powder coating technique compared to the conventional powder blending technique.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3