Phase evolution in Ni–Nb multilayers upon solid-state reaction

Author:

Yang G. W.,Lin C.,Liu B. X.

Abstract

Solid-state amorphization was achieved in the Ni48Nb52 multilayers upon thermal annealing by gradually raising the temperature from 250 to 400 °C and staying at 400 °C for 2 h. More interestingly, before complete amorphization, a sequential disordering of first Ni and then Nb crystalline lattices was observed for the first time, and it was essentially the physical origin of an asymmetric growth of the amorphous interlayer during solid-state reaction reported previously in some binary metal systems. In another two multilayered samples with overall compositions of Ni64Nb36 and Ni70Nb30, thermal annealing under similar conditions resulted in the formation of two metastable crystalline phases with face-centered-cubic and hexagonal-close-packed structures, respectively, although an amorphous phase also appeared and coexisted with one of the metastable crystalline phases in the intermediate states. In the ion mixing experiment, such sequential disordering, as well as formation of metastable phases, was also observed in the respective Ni–Nb multilayers upon room-temperature 200-keV xenon ion irradiation. Comparatively, however, ion irradiation eventually induced complete amorphization in all the multilayers at the respective doses, indicating that ion-induced disordering frequently predominated in the competition between amorphization and the growth of a metastable crystalline phase. A Gibbs free energy diagram, including the free energy curves of the newly formed metastable crystalline phases, of the Ni–Nb system was calculated based on Miedema's model. The constructed free energy diagram can give reasonable explanations of the sequential disordering and the thermodynamic possibility of the formation of either an amorphous or a metastable crystalline phase, of which the free energy difference was quite small. It follows naturally that the phase selection, namely, which phase was more favored to be formed eventually than its competitors, was influenced or even determined by the kinetics involved in the respective processes.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3