Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron–nickel particles

Author:

Anderson P. E.,Rodriguez N. M.

Abstract

Extremely fine, tubular graphite nanofibers of varying geometries and degrees of crystallinity were produced by the decomposition of CO and hydrogen over various compositions of nickel–iron particles supported on silica. High-resolution transmission electron microscopy coupled with temperature programmed oxidation studies revealed that, as the iron content of the catalyst was increased, the bimetallic particles precipitated a chainlike graphitic fibrous structure in a stepwise mechanism. The high-iron-content system Fe–Ni (8:2) yielded a small amount of these chainlike graphite fibers that were extremely resilient to oxidation, suggesting a highly crystalline structure. When the catalyst particles consisted of a nickel–iron mixture, Fe–Ni (5:5), there was a decrease in the degree of crystallinity of the fibers (78% graphite) and a corresponding increase in the amount of amorphous carbon precipitated (22% amorphous) within the structure. The high-nickel catalyst Fe–Ni (2:8) generated the largest amount of the tubular nanofiber product. It was significant that there was an increase in the amorphous carbon content (58%) precipitated as opposed to graphitic carbon (42%) in the structures. In some cases, amorphous carbon was deposited inside the graphite core of the nanofibers. The influence of the catalyst composition and nature of the metal-support interaction are key factors in the continuing development of graphite nanofibers possessing desired structures for potential uses in a variety of applications.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3