Preparation of boron and phosphorus-doped SiC :H films using electron cyclotron resonance chemical vapor deposition: Some effects of microwave power

Author:

Yoon S. F.,Ji R.,Ahn J.

Abstract

Hydrogenated silicon carbide films (SiC :H) were deposited using the electron cyclotron resonance chemical vapor deposition (ECR-CVD) technique from a mixture of methane, silane, and hydrogen, and using diborane and phosphine as doping gases. The effects of changes in the microwave power on the deposition rate and optical band gap were investigated, and variations in the photo- and dark-conductivities and activation energy were studied in conjunction with film analysis using the Raman scattering technique. In the case of boron-doped samples, the conductivity increased rapidly to a maximum, followed by rapid reduction at high microwave powers. The ratio of the photo- to dark-conductivity (σphd) peaked at microwave power of ∼600 W. Under conditions of high microwave power, Raman scattering analysis showed evidence of the formation and increase in the silicon microcrystalline and diamond-like phases in the films, the former of which could account for the rapid increase and the latter the subsequent decrease in the conductivity. In the case of phosphorus-doped SiC :H samples, it was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the films which occurred in correspondence to a rapid increase in the conductivity and reduction in the activation energy. The conductivity increase stabilized in samples deposited at microwave powers exceeding 500 W probably as a result of dopant saturation. Results from Raman scattering measurements also showed that phosphorus doping has the effect of enhancing the formation of the silicon microcrystals in the film whereas the presence of boron has the effect of preserving the amorphous structure.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3