Processing and characterization of alumina thin films on chemically vapor deposited diamond substrates for producing adherent metallizations

Author:

Menon E. S. K.,Dutta I.

Abstract

In order to make the surface of chemically vapor deposited diamond (CVDD) substrates amenable to metallization by both thin and thick film approaches currently utilized in electronic packaging, a thin, adherent, insulating aluminum oxide film was grown on diamond at low temperatures (<675 K). The film was produced by reactive thermal evaporation of Al and O in an oxygen atmosphere, followed by low-temperature annealing in oxygen. A Cr intermediate layer was deposited on diamond prior to the deposition of aluminum oxide in order to enhance adhesion between the oxide and diamond. The chemistry, crystal structure, and microstructure of the film were characterized in detail via scanning and transmission electron microscopy, as well as Auger electron spectroscopy. Particular attention was given to the mechanisms of bonding across the CVDD-Cr and Cr-alumina interfaces, as well as the stability of the surface treatment following metallization by fritted pastes requiring firing at elevated temperatures. The Cr was found to be bonded with CVDD by Cr23C6 formation, while the bonding between the Cr and alumina layers was provided by the formation of a compositionally modulated solid solution with Al2O3-rich and Cr2O3-rich regions.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference43 articles.

1. Auger electron spectroscopy of stoichiometric chromium carbides and carbide precipitates at grain boundaries of type 304 stainless steel

2. 37. Practical Surface Analysis, edited by D. Briggs and M.P. Seah, 2nd ed. (John Wiley & Sons, New York, 1990), Vol. 1, p. 102.

3. Local structure of diamond films: Auger and EELFS investigation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3