Effect of divalent cations on the synthesis of citrate-gel-derived lanthanum hexaluminate powders and films

Author:

Cinibulk Michael K.

Abstract

Low-temperature synthesis of hexaluminate phases for fiber–matrix interphases in ceramic–matrix composites is necessary to minimize processing temperatures to prevent fiber-strength degradation. Citrate-gel-derived lanthanum hexaluminate was synthesized using divalent transition-metal cations to stabilize the magnetoplumbite structure. Pure, undoped LaAl11O18was obtained in 1 h only at temperatures >1500 °C after the formation and subsequent consumption of the intermediate perovskite, LaAlO3, which first appeared at ∼1150 °C. Powders of LaMAl11O19, where M = Mg, Mn, Fe, Co, Ni, Cu, and Zn, were prepared at much lower temperatures. Highly crystalline, phase-pure powders of LaMnAl11O19and LaCuAl11O19were obtained at 1000 °C in 1 h directly from the amorphous powder without the formation of the intermediate perovskite. All other compositions could be obtained at 1100 °C in 1 h except for the nominal LaNiAl11O19, which formed primarily LaAlO3, NiAl2O4, and Al2O3. Powders containing dopants all had similar grain sizes and morphologies at 1200 and 1500 °C; the grain size of powders with dopants was significantly greater than that of pure LaAl11O18powder. The introduction of a second charge-compensating quadrivalent dopant for excess divalent cation did not greatly influence synthesis or grain growth below the eutectic temperature but did seem to enhance the [0001] texture of films on single-crystal yttrium-aluminum garnet substrates compared with singly doped films.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3