Abstract
Ca4(PO4)2O (TetCP) reacts with an acidic polyelectrolyte in the absence of a solvent to form a composite composed of Ca10(PO4)6(OH)2 (hydroxyapatite, or HAp) and the Ca salt of the polyelectrolyte. Mixtures of an acrylic copolymer and TetCP powders were hot-pressed, and the effects of temperature, pressure, and time on HAp formation were studied. Reaction starts when the copolymer is heated to above Tg. Initial carboxyl site neutralization liberates water, continued TetCP hydrolysis, liberates Ca2+ ions, which react with the copolymer forming its Ca salt. When 90% conversion to HAp was achieved, the composite had an average tensile strength of 51 MPa, a Vickers hardness of 145 kg/mm2 and a Tg ˜50 °C.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献