Fracture of fused silica with 351 nm laser-generated surface cracks

Author:

Dahmani F.,Lambropoulos J. C.,Schmid A. W.,Papernov S.,Burns S. J.

Abstract

Laser-induced-surface-flaw experiments on fused silica at 351 nm and 500 ps pulse duration are reported here. Specimens with surface flaws produced at a measured exit-surface damage threshold fluence of Fexit/th = 10 J/cm2 were irradiated at a constant fluence of FL = 1.8 × Fexit/th by different numbers of laser pulses, N = 110 to 520. Micrograph observations show that (i) the produced cracks have a semielliptical shape and (ii) the material strength predictions based on the radial crack depth (normal to the surface) instead of the crack surface length (parallel to the surface) are in good agreement with measured strengths obtained using a four-point bending fixture. The underlying basis of conventional crack analysis is first examined critically and is argued to be deficient in the way the failure strength for the cracks is related to the characteristic parameters of crack geometry. In general, it is necessary to incorporate a residual term into the failure strength formulation. The crack depth and the failure strength are found to increase and decrease with the number of laser pulses, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3