Group 2 Element Chemistry and its Role in OMVPE of Electronic Ceramics

Author:

Rees William S.

Abstract

AbstractCoordination compounds of alkaline-earth metals with simple monodentate ligands were mentioned in the literature as early as 1820, when Faraday reported ‘metal-ammonias’.[1] The number of heavy alkaline earth element coordination compounds remained limited for many years, however, as it was thought to be unlikely for the large earth alkaline cations to form such complexes. In 1967 Pedersen discovered that cyclic oligoethers (crown ethers) can serve as suitable ligands for divalent alkaline earth cations.[2] His findings were extended a few years later by Lehn who found that macrobicyclic multidentate ligands (cryptands) are efficient ligands for alkaline earth cations.[3] In each of these examples, the primary mode of metal-ligand interaction is electrostatic in origin. These examples demonstrate the lack of well-defined covalent bonding for Ca, Sr and Ba compounds. In the 25 years which have passed since Pedersen's seminal discovery, a large number of coordination compounds containing alkaline earth metals have been synthesized. In recent years, the emphasis has shifted towards the preparation of group 2 element-containing compounds which potentially can be used as precursors in the preparation of metal oxides by chemical vapor deposition [4–8]. In light of the general agreement that no “perfect” barium source presently exists for OMVPE purposes, this article will focus on general themes in group 2 element chemistry and, where relevant, correlate those themes within an integrated approach to design of new compounds of greater potential utilization for the preparation of electronic materials in thin film form.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference67 articles.

1. 66. Rees W. S. Jr. Ceramic Industries International, April 1993, 22 - 26.

2. 61. Rees W. S. Jr. ,, Luten H. A. , Carris M. W. , Caballero C. R. , Hesse W. , Goedken V. L. , MRS Symposium Proceedings, Spring 1993 Meeting, San Francisco, CA., “Ferroelectric Thin Films III”, Myers E. R. , Desu S. B. , Tuttle B. A. , Larson P. K. , Eds., in press.

3. 55. Rees W. S. Jr. , Lay U. W. , Dippel K. A. , J. Organomet. Chem. 1994, submitted for publication.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3