Three Dimensional Microstructures from Metal Carbonyls

Author:

Lind Jan-Erik,Nyrhila Olli,Kotila Juha,Syvanen Tatu

Abstract

Abstract3D-LCVD of nickel and iron carbonyls was studied in order to grow 3-D metal forms under static or scanning Nd:YAG-laser beam. In addition to growth, emphasis was also placed on the prevention of the simultaneous decomposition of carbon monoxide, which interferes with the metal growth process. This was essential, because the fairly high precursor gas pressures of the metal carbonyls are very tempting for the 3D-LCVD. Parameters to be optimized included precursor pressure, laser power, laser scan speed and spot size. In order to optimize the growth parameters, the microstructures of the resulting forms were studied using SEM. Comparison between static and scanning growth is presented with the building philosophy in mind, e.g. whether to build structures layer by layer, from modules or in conjunction with another process to compensate for their shortcomings. The substrates used included steel, graphite and porous bronze.The results indicated different microstructures for iron and nickel, which were dependent on the total/precursor pressure. In the scanning experiments, nickel produced very thin films of high reflectivity, whereas iron produced a structure which could be described as a crystalline spider's web. The static experiments produced solid rods in the case of nickel, whereas with iron, the rods were hollow, even with same spot sizes. Moreover, an evident change in the microstructure of the nickel forms as a function of pressure was observed. The 3-D growth rate of the static experiments seemed very promising for the forthcoming scanning experiments.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference6 articles.

1. 2. Lind J-E. , M.Sc. Thesis, Tampere University of Technology, Finland, 1998.

2. 5. Allen S.D. , Copley S.M. , and Edwards R.H. , Report DOE/ER/45012-01, U.S.C. Center for Laser Studies, June (1984).

3. The metal carbonyls. I. History; II. Preparation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3