Author:
Cherkashin Nikolay,Gouye A.,Hue F.,Houdellier F.,Hytch M. J.,Snoeck E.,Paillard V.,Kermarrec O.,Rouchon D.,Burdin M.,Holliger P.,Claverie A.
Abstract
AbstractIn this work, we performed quantitative measurements of strain in structures consisting of a 30 nm-thick Si1-yCy layer grown by chemical vapour deposition (CVD) on a Si (001) substrate at 550 or 600°C. The total C concentration varies from 0.67 to 1.97% that was measured by SIMS. Geometric phase analysis (GPA) of high resolution transmission electron microscopy (HR TEM) cross-section images and convergent beam electron diffraction (CBED) were used to deduce the strain within these Si1-yCy layers. Finite-element simulations were carried out to estimate the impact of strain relaxation in thin areas of a specimen. These results were compared with the data obtained by high resolution X-ray diffraction and Raman spectroscopy and with the predictions of elasticity theory. Particular interest is paid to the formation of the structural defects within Si1-yCy layers as a function of a C concentration, growth temperature and incorporated strain. Both cross-sectional and plan-view TEM specimen configurations were used to obtain quantitative information on the defect size distribution, their density and structure.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献