Degradation of Single-Quantum Well InGaN Green Light Emitting Diodes Under High Electrical Stress

Author:

Osiński Marek,Perlin Piotr,Eliseev Ptr G,Liu Gungtan,Barton Daniel L

Abstract

ABSTRACTWe performed a degradation study of high-brightness Nichia single-quantum well AlGaN/InGaN/GaN green light-emitting diodes (LEDs). The devices were subjected to high current electrical stress with current pulse amplitudes between 1 A and 7 A and voltages between 10 V and 70 V with a pulse length of 100 ns and a repetition rate of 1 kHz. The study showed that when the current amplitude was increased to the 6 A - 7.5 A range, a fast (about 1 s) degradation occurred, with a visible discharge between the p and n-type electrodes. Subsequent failure analysis revealed severe damage to metal contacts which lead to the formation of shorts in the surface plane of diode. For currents smaller than 6 A, a slow degradation was observed as a decrease in optical power and an increase in the reverse current leakage. After between 24 and 100 hours however, a rapid degradation occurred which was similar to the rapid degradation observed at higher currents. Failure analysis results suggest that carbonization of the plastic encapsulation material on the diode surface leads to the discharge which destroys the diode.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3