Formation and characterization of nanostructured V—P—O particles in flames: A new route for the formation of catalysts

Author:

Miquel Philippe F.,Katz Joseph L.

Abstract

A counterflow diffusion flame burner was used to produce nanophase vanadium-phosphorus oxide powders in a hydrogen-oxygen flame. Liquid precursors, i.e., VOCl3 and PCl3, were used as source materials in a 1:1 ratio. In situ formation processes were investigated at two temperatures by laser light scattering, by emission and absorption spectroscopy, and by collecting particles directly onto carbon-coated TEM grids. At the higher temperature, the collected powders are spherical particles about 30 to 50 nm in diameter. At the lower temperature, the powders collected are chain-like structures composed of particles 5 to 10 nm in diameter. Particles formed in the burner were collected also from the burner's flanges and from two auxiliary strips. Their crystalline phases and surface area were determined by x-ray diffractometry, FT-IR spectroscopy, and BET analysis by nitrogen desorption. These results indicate a strong influence of temperature on the crystalline phases of the powders. At the higher temperature, the powder collected is a mixture of VOPO4 · 2H2O and δ-VOPO4. This mixture forms Λ-VOPO4 upon subsequent reheating at 750 °C. At the lower temperature, the powders collected are a VOHxPO4 · yH2O phase and VO(H2PO4)2, and form β-VOPO4 and V(PO3)3, respectively, upon subsequent reheating at 750 °C.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Vanadium-Phosphorus Oxide Catalysts for the Selective Oxidation of C4Hydrocarbons to Maleic Anhydride

2. Preparation and some properties of vanadium(III) tris(metaphosphate) and vanadium(IV) bis(metaphosphate)

3. The chemistry of catalysts based on vanadium-phosphorus oxides

4. 33The chain-like and the spherical particles collected on TEM grids in Flame 1 have structures and morphologies similar to those collected in Flame 2 (shown in Fig. 4), although their sizes are different, as stated in the text.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3