Abstract
In the process of crystallization of amorphous melt-spun Nd15Fe77Bx (x = 6–14) alloys, it was found that the crystallization behavior strongly depended upon the boron content even in the same equilibrium three-phase coexistence range. The Nd2Fe14B phase was crystallized directly from the amorphous state in the amorphous Nd-Fe-B materials with relatively lower boron content (Nd15Fe77B6 and Nd15Fe77B8 alloys). In contrast, the metastable body-centered-cubic (bcc) α-iron phase crystallized from the amorphous state prior to the crystallization of the Nd2Fe14B phase in the amorphous Nd-Fe-B materials with relatively higher boron content (Nd15Fe77B10, Nd15Fe77B12, and Nd15Fe77B14 alloys). The existence of the metastable bcc α-iron phase in the amorphous matrix was confirmed by TEM studies, magnetic measurements, and in situ observation by x-ray diffraction. The formation of the metastable phase stabilized the amorphous state, increasing the crystallization temperature of the Nd2Fe14B phase.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献