Author:
Dickinson J.T.,Jensen L.C.,Langford S.C.,Hoagland R.G.
Abstract
The surface area created during tensile deformation and fracture of the reactive metals Ti, Zr, Mg, and Al is probed by real-time measurements of chemisorptive electron emission (CSE) due to oxygen adsorption. CSE is sensitive to the number of fresh metal atoms exposed at the surface as a consequence of plastic deformation. At constant strain rate, Ti, Zr, and Mg all display exponential increases in CSE intensities during loading, reflecting exponential increases in surface area prior to fracture. In Ti and Zr, CSE begins at the onset of unstable necking. In contrast, CSE intensities from Al reflect a nearly constant rate of surface area production during deformation at constant strain rate. Calibration of the Ti CSE intensities per unit surface area allowed determination of the total surface area produced during deformation and fracture. Atomic force microscopy of the necked region in strained Ti samples shows dramatic increases in surface roughness, in near agreement with the CSE results. A model is presented to account for these observations. The utility of CSE measurements as a probe of deformation and ductile fracture is discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献