Abstract
A simple model for the size-dependent amplitude of the atomic thermal vibrations of a nanocrystal is presented which leads to the development of a model for the size dependent melting temperature in nanocrystals on the basis of Lindemann's criterion. The two models are in terms of a directly measurable parameter for the corresponding bulk crystal, i.e., the ratio between the amplitude of thermal vibrations for surface atoms and that for interior ones. It is shown that the present model for the melting temperature offers not only a qualitative but even an excellent quantitative agreement with the experimentally observed size-dependent superheating, as well as melting point suppression in both the supported and embedded metallic and semiconductor nanocrystals.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
295 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献