Effects of boron on the deformation behavior of Ni3Al

Author:

Brusso J.A.,Mikkola D.E.

Abstract

The effects of boron additions (0 to 4000 wppm B) on the room temperature deformation behavior of Ni-24Al have been examined with both quasi-static deformation and short pulse duration shock loading. Changes in compressive yield strength and hardness with the amount of boron suggest that strengthening effects are more complicated than predicted by usual interstitial solid-solution strengthening considerations. The nature of the dislocations changes from SISF-dissociated superdislocations in the Ni-24Al base alloy to APB-dissociated dislocations with the additions of small amounts of boron. Therefore, the observed variation in strength with boron additions reflects a solid-solution strengthening contribution from the interstitial boron coupled with a “softening” effect arising from the greater mobility of the APB-bounding partials relative to the SISF-bounding partials. It is suggested that this “softening” is a necessary prerequisite for enhanced ductility in Ni3Al. In addition, the grain boundary fracture strength must be increased by boron additions. While this may occur through an increased grain boundary cohesive strength due to boron segregation, it is also expected that the interaction of the dislocations with the grain boundaries will be significantly altered as the nature of the dislocations changes. The lack of a “boron effect” in Ni-25Al, the so-called stoichiometric effect, can be attributed to a diminished “softening”, combined with the rapid solid-solution strengthening observed in this alloy.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3