Abstract
A method that determines the work done in shearing atom pairs straddling the slip plane, Φ, during emission of dislocations from a crack tip in an atomic model is presented. The model is based on an EAM-type potential for nickel. The dislocations are emitted as partials, and the disregistry, Δ, across the slip plane is found to be fit accurately by a simple arctan function of position for each partial. The width of the partials is also found to remain essentially constant as they are emitted and move away from the crack tip. Rice's unstable stacking energy is extracted from the Φ - Δ curves for the atom pairs along the slip plane and is observed to vary somewhat, particularly near the crack tip. In addition to the Φ (Δ) at points on the slip plane, the total work done on the entire slip plane is determined as a function of the dislocation position in the spirit of the Peierls approach. The derivative of this total work with respect to dislocation position leads to the lattice resistance, ŝr. The first partial dislocation to be emitted experiences a maximum in ŝr at about 0.2 nm from the crack tip, and several contributions to the overall resistance can be identified including the creation of a new surface at the tip as emission occurs, the creation of stacking fault as the dislocation glides away from the tip, and a small but discernible periodic component with a period related to the lattice. A string of hydrogen interstitials is introduced at various locations in the lattice and its effect on Δ, Φ - Δ curves along the slip plane, and the lattice resistance is examined. A substantial effect on the unstable stacking energy results as the dislocation passes an interstitial on the slip plane, but the effect of an interstitial on the resistance to dislocation emission expressed in terms of the maximum ŝr is small and then only if it is confined to a region very near the crack tip. The significance of these results is discussed together with some additional observations including dislocation pinning on the interstitials.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献