On the energetics of dislocation emission from a crack tip in nickel containing hydrogen

Author:

Hoagland Richard G.

Abstract

A method that determines the work done in shearing atom pairs straddling the slip plane, Φ, during emission of dislocations from a crack tip in an atomic model is presented. The model is based on an EAM-type potential for nickel. The dislocations are emitted as partials, and the disregistry, Δ, across the slip plane is found to be fit accurately by a simple arctan function of position for each partial. The width of the partials is also found to remain essentially constant as they are emitted and move away from the crack tip. Rice's unstable stacking energy is extracted from the Φ - Δ curves for the atom pairs along the slip plane and is observed to vary somewhat, particularly near the crack tip. In addition to the Φ (Δ) at points on the slip plane, the total work done on the entire slip plane is determined as a function of the dislocation position in the spirit of the Peierls approach. The derivative of this total work with respect to dislocation position leads to the lattice resistance, ŝr. The first partial dislocation to be emitted experiences a maximum in ŝr at about 0.2 nm from the crack tip, and several contributions to the overall resistance can be identified including the creation of a new surface at the tip as emission occurs, the creation of stacking fault as the dislocation glides away from the tip, and a small but discernible periodic component with a period related to the lattice. A string of hydrogen interstitials is introduced at various locations in the lattice and its effect on Δ, Φ - Δ curves along the slip plane, and the lattice resistance is examined. A substantial effect on the unstable stacking energy results as the dislocation passes an interstitial on the slip plane, but the effect of an interstitial on the resistance to dislocation emission expressed in terms of the maximum ŝr is small and then only if it is confined to a region very near the crack tip. The significance of these results is discussed together with some additional observations including dislocation pinning on the interstitials.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3