Surfactant-Mediated Growth of SiGe/Si Quantum-Well Structures Studied by Photoluminescence Technique and Secondary Ion Mass Spectrometry

Author:

Nilsson S.,Zeindl H. P.,Krüger D.,Klatt J.,Kurps R.

Abstract

ABSTRACTIn this investigation, surfactant-mediated growth of SiGe/Si single quantum-well structures is studied by photoluminescence and secondary ion mass spectrometry. The samples were grown by molecular-beam epitaxy and Sb was used as a surfactant. The photon energy of the SiGe-related near-band-edge photoluminescence was used to probe the action of Sb as a surfactant to promote two-dimensional growth and to reduce segregation of Ge during growth. First, the "growth-temperature window" at which Sb acts preferentially as a surfactant was determined. Then, at this optimized temperature of 700°C, the influence of different Sb coverages was investigated and it was found that 0.5 monolayer was a sufficient coverage to obtain full surfactant action. Ge concentration depth profiles obtained by secondary ion mass spectrometry confirmed the effect of surfactant-mediated growth and, in addition, the unintentional incorporation of the Sb surfactant during growth was determined quantitatively. In a final experiment the effect of deposition of Sb on either the lower or the upper heterointerface is addressed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. Antimony adsorption on silicon

2. 6 Gerling M. , Nilsson S. , Zeindl H.P. and Jagdhold U. , MRS spring meeting in San Francisco 1995, to be published in the MRS proceedings: Strained Layer Epitaxy-Materials, Processing and Device Applications.

3. Surfactant-mediated molecular beam epitaxy of strained layer semiconductor heterostructures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Sb on Si/Si and Ge/Si growth process;Materials Science and Engineering: B;2003-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3