Polarization switching mechanisms and electromechanical properties of La-modified lead zirconate titanate ceramics

Author:

Li Jie-Fang,Dai Xunhu,Chow Albert,Viehland Dwight

Abstract

The electromechanical properties of (Pb1−xLax)(ZryTi1−y)O3 [PLZT x/y/(1 - y)] have been investigated in the compositional range 0 < x < 0.10 for y = 0.65 (rhombohedral PLZT) and 0 < x < 0.18 for y = 0.40 (tetragonal PLZT). Both field-induced strains (∊-E) associated with polarization switching and piezoelectric responses (d33) were studied. Transmission electron microscopy (TEM) and dielectric investigations were also performed. Room temperature TEM investigations revealed common trends in the domain structure with increasing La content for both PLZT x/65/35 and x/40/60, including a micron-sized domain structure, a subdomain tweed-like structure, and a nanopolar domain state. Changes in the field-induced strains and piezoelectric properties were then related to these microstructural trends. The dominant electromechanical coupling mechanism in the micron-sized domain state was found to be piezoelectricity. However, an electrostrictive coupling became apparent with the appearance of the subdomain tweed-like structures, and became stronger in the nanopolar domain state. It is believed that polarization switching can-occur through 70°or 110°domains, the subdomain tweed-like structure, or nanopolar domains depending on La content.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference19 articles.

1. 19 Rossetti G. , Ph.D. Dissertation, The Pennsylvania State University (1993).

2. Crystalline ferroelectrics with glassy polarization behavior

3. 7 Viehland D. , Ph.D. Dissertation, The Pennsylvania State University (1991).

4. Relaxor ferroelectrics

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3