Design of highly CO2-soluble chelating agents for carbon dioxide extraction of heavy metals

Author:

Yazdi Ali V.,Beckman Eric J.

Abstract

Carbon dioxide is an attractive organic solvent in today's chemical process environment, in that it is nonflammable, inexpensive, and exhibits low toxicity. Further, materials solubilized in carbon dioxide are easily and completely recovered/concentrated from solution via a simple pressure quench. Despite these favorable properties, CO2 is nonpolar and therefore is a very poor solvent for materials such as conventional metal chelating agents, thus blocking application of carbon dioxide in metal extraction/recovery. Consequently, we are exploring the molecular design of materials which are highly CO2 phillic, that is, they exhibit solubilities in carbon dioxide which are significantly greater than alkanes with the same number of main-chain atoms. By functionalizing chelating moieties with CO2-phillic oligomers, we have generated materials that both effectively extract metals from solid matrices and that dissolve in carbon dioxide in significant quantities. The application of such chelating agents is not limited to soil cleaning operations. In fact, these chelates make the use of CO2 possible in many applications where precision cleanup/recovery of metal ions are required. For example, CO2 has been promoted as a replacement for CFC's in cleaning processes in the electronics industry. Use of these chelates would allow the removal of metals, along with other impurities in a CO2 cleanup procedure.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid–liquid extraction;Coulson and Richardson's Chemical Engineering;2023

2. Supercritical Fluids;Kirk-Othmer Encyclopedia of Chemical Technology;2016-12-15

3. Small-Angle X-ray Scattering Insights into the Architecture-Dependent Emulsifying Properties of Amphiphilic Copolymers in Supercritical Carbon Dioxide;The Journal of Physical Chemistry B;2015-01-08

4. Speciation Analysis of Chromium in Environmental Samples;Critical Reviews in Environmental Science and Technology;2012-02-15

5. Supercritical carbon dioxide swelling of fluorinated and hydrocarbon surfactant templates in mesoporous silica thin films;Journal of Colloid and Interface Science;2012-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3