An experimental study of the temperature and stoichiometry dependence of diamond growth in low pressure flat flames

Author:

Kim J.S.,Cappelli M.A.

Abstract

A study of the temperature and stoichiometry dependence of diamond synthesis in low pressure premixed acetylene-oxygen flames is presented. A specially designed low pressure flat flame operating at 40 Torr is employed to deposit diamond films uniformly over areas of at least 2 cm2. Under optimized conditions of substrate temperatures and flame equivalence ratios, high quality translucent diamond that is well faceted is synthesized exhibiting first-order Raman fullwidths (half maximum) of about 2.5 cm−1. Diamond growth rates under these optimum conditions are approximately 4 μm/h. The film growth rate is found to drop off substantially at high substrate temperatures, with little or no carbon deposited beyond a temperature of 1070 °C. The growth behavior in response to changes in flame equivalence ratio and substrate temperature is discussed in terms of the possible role that oxygen-containing species may have on surface chemistry. The results described here are also used to project a base cost for manufacturing diamond under these process conditions.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical vapour deposition of diamond using low pressure flat combustion flame;Journal of the Serbian Chemical Society;2006

2. Diamond Synthesized at Low Pressure;Chemistry and Physics of Carbon;2004-11-30

3. Combustion Synthesis of Diamond;Diamond Films Handbook;2002-01-23

4. Raman spectroscopic characterization of diamond films grown in a low-pressure flat flame;Journal of Crystal Growth;2001-06

5. Process optimization in the low-pressure flat flame growth of diamond;Diamond and Related Materials;2001-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3