A model for microwave processing of compositionally changing ceramic systems

Author:

Skamser Daniel J.,Thomas Jeffrey J.,Jennings Hamlin M.,Lynn Johnson D.

Abstract

A finite-difference model was used to simulate the temperature and composition distributions produced inside a specimen heated with microwave energy during a process involving a change in composition. The dielectric properties of the specimen change with composition, resulting in nonuniform microwave power absorption and steady-state temperature gradients. When the specimen becomes less lossy as it reacts, or if the changes in the microwave heating properties are gradual, the reaction proceeds relatively uniformly and the volumetric microwave heating creates an inside-out reaction profile leading to increased conversions for processes such as reaction bonding and chemical vapor infiltration (CVI). If the specimen becomes more lossy as it reacts, then the reaction proceeds nonuniformly with rapid reaction rates in the hottest parts of the specimen and little or no reaction in the cooler areas. The process may then occur as a reaction front which moves along the specimen, as with combustion synthesis. This type of processing has potential advantages and disadvantages depending on the system.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3