Abstract
The stress/strain behavior of bulk material is usually investigated in uniaxial tension or compression; however, these methods are not generally available for very small volumes of material. Submicrometer indentation using a spherical indenter has the potential for filling this gap with, possibly, access to hardness and elastic modulus profiles, representative stress/strain curves, and the strain hardening index. The proposed techniques are based on principles well established in hardness testing using spherical indenters, but not previously applied to depth-sensing instruments capable of measurements on a submicrometer scale. These approaches are now adapted to the analysis of data obtained by stepwise indentation with partial unloading, a technique that facilitates separation of the elastic and plastic components of indentation at each step and is able to take account of the usually ignored phenomena of “piling up” and “sinking in”.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
332 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献