A Study of the Use of Novel Self-ordering Functionalized Polymers to Control Crystal Growth

Author:

Heywood Brigid R.,Ovens Adam C. D.

Abstract

ABSTRACTIn this research, the ability of a series of novel oligomeric organic species to control crystal nucleation and growth of inorganic crystals was investigated. The issues under consideration were (i) the relative balance of hydrophobicity and hydrophilicity which might be programmed into a polymer; (ii) the impact metal binding, or bridging on its activity in a crystallization reaction; (iii) the mode of self organisation. An homologous series of alkyl substituted sulphonated calixarenes were used to probe these issues.The ability of a metal cation to either bridge adjacent calix[4]arenes or to adsorb into the molecular cavity had an impact upon the interaction of these molecules with the nascent crystals; selective and specific adsorption behaviours were revealed by the expression of smooth well defined new faces in the equilibrium morphology of the crystals. When the hydrophobicity index was high (increased molecular weight of alkyl substituent) these compounds segregated at the gas/liquid interface and, as a consequence of cation-induced ordering, were able to induce the oriented nucleation of crystals. When the metal ion was preferentially adsorbed into the molecular cavity the complex induced twinning in the crystal form. These studies have revealed that, in contrast to earlier studies which argued for the only for an epitaxial relationship between the polymer and crystal, a tunable range of several chemical characteristics can be programmed into a polymeric substrates if they are to be used to control nucleation and growth.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3