Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites

Author:

Conner R. D.,Choi-Yim H.,Johnson W. L.

Abstract

To increase the toughness of a metallic glass with the nominal composition Zr57Nb5Al10Cu15.4Ni12.6, it was used as the matrix in particulate composites reinforced with W, WC, Ta, and SiC. The composites were tested in compression and tension experiments. Compressive strain to failure increased by more than 300% compared with the unreinforced Zr57Nb5Al10Cu15.4Ni12.6, and energy to break of the tensile samples increased by more than 50%. The increase in toughness came from the particles restricting shear band propagation, promoting the generation of multiple shear bands and additional fracture surface area. There was direct evidence of viscous flow of the metallic glass matrix within the confines of the shear bands.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference22 articles.

1. 13. Lin X. and Choi-Yim H. (unpublished).

2. Fracture of a brittle particulate composite

3. The fracture topography of metallic glasses

4. 19. Bruck H.A. , Ph.D. Thesis, California Institute of Technology (1995).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3