Author:
Bahr D. F.,Wilson D. E.,Crowson D. A.
Abstract
Two experiments that probe the nature of the rapid transition from elastic to plastic deformation are described. The load, and therefore stress, at which this yield point occurs is shown to be relatively independent of temperature in an iron alloy. When stresses lower than those required to generate a yield point during loading are applied for times between seconds and minutes, yielding occurs while the sample is under an applied stress. The time to generate a yield point increases as the applied stress is decreased. The possibilities of dislocation glide loop nucleation, double kink nucleation, and dislocation breakaway from pinning points are examined. Only glide loop nucleation appears to match the experimental observations. Criteria based on the stress-volume requirements of glide loop nucleation and the stress field underneath an indenter are presented which qualitatively describe the experimental data.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献