Si3N4–SiC–Y2O3 ceramics derived from yttrium-modified block copolymer of perhydropolysilazane and hydroxy-polycarbosilane

Author:

Iwamoto Yuji,Kikuta Ko-ichi,Hirano Shin-ichi

Abstract

A polymeric precursor for the Si3N4–SiC–Y2O3 ceramic system was synthesized by block copolymerization of perhydropolysilazane (PHPS) with hydroxy-polycarbosilane (PCS-OH), followed by chemical modification with yttrium methoxide. Fully dense Si3N4–SiC–Y2O3 ceramics were successfully synthesized by pyrolysis of the polymeric precursor at 1000 °C, followed by hot pressing at 1800 °C in N2. The resulting ceramics revealed that β–SiC particles were dispersed in a size range of about 10–600 nm, and a large amount of β–SiC submicron particles were segregated at the β–Si3N4 matrix grain boundaries. It was found that the yttrium-modified block copolymer of PHPS and PCS-OH yielded unique binary ceramics composed of β–SiC–Y2O3 and β–SiC nanoparticle-dispersed Si3N4–Y2O3.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3