Silicon and zinc telluride nanoparticles synthesized by low energy density pulsed laser ablation into ambient gases

Author:

Lowndes Douglas H.,Rouleau Christopher M.,Thundat T.G.,Duscher G.,Kenik E.A.,Pennycook S.J.

Abstract

The size distributions of Si and ZnTe nanoparticles produced by low energy density ArF (193 nm) pulsed laser ablation into ambient gases were measured as a function of the gas pressure, P, and target-substrate separation, Dts. For both Si and ZnTe, the largest nanoparticles were found closest to the ablation target, and the mean nanoparticle size decreased with increasing Dts. For Si ablation into He, the mean nanoparticle diameter did not increase monotonically with gas pressure but reached a maximum near P = 6 Torr. High resolution Z-contrast transmission electron microscopy and energy loss spectroscopy revealed that ZnTe nanoparticles consist of a crystalline core surrounded by an amorphous ZnO shell; growth defects and surface steps are clearly visible in the crystalline core. A pronounced narrowing of the ZnTe nanocrystal size distribution with increasing Dts also was found. The results demonstrate that the size of laser-ablated nanoparticles can be controlled by varying the molecular weight and pressure of an ambient gas and that nanometer-scale particles can be synthesized. Larger aggregates of both ZnTe and Si having a “flakelike” or “weblike” structure were formed at the higher ambient gas pressures; for ZnTe these appear to be open agglomerates of much smaller (∼10 nm) particles.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Optical Properties of Silicon Nanocrystallites Prepared by Excimer Laser Ablation in Inert Gas

2. 13. Yoshida T. , personal communication. In the deposition experiments the laser pulse energy was 60 mJ, measured before the quartz entrance window. Assuming a transmission factor of 0.91 and the 1×3 mm area of Refs. 7 and 8, this corresponds to Ed ∼ 1.8 J/cm2.

3. Synthesis of Novel Thin-Film Materials by Pulsed Laser Deposition

4. Light Emission from Nanometer-Sized Silicon Particles Fabricated by the Laser Ablation Method

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3