Author:
Zhou You,Hirao Kiyoshi,Toriyama Motohiro,Tanaka Hidehiko
Abstract
Using a pulse electric current sintering (PECS) method, β–SiC and α–SiC powders doped with a few weight percent of Al2O3–Y2O3oxide or Al4C3–B4C–C nonoxide additives were rapidly densified to high densities (95.2–99.7%) within less than 30 min of total processing time. When Al2O3–Y2O3additive was used, both ceramics resulting from β–SiC and α–SiC had fine, equiaxed microstructures. In contrast, when Al4C3–B4C–C additive was used, the ceramic resulting from α–SiC had a coarse, equiaxed microstructure, whereas the ceramic resulting from β–SiC was composed of large elongated grains whose formation was accompanied by the β →?α phase transformation of SiC. Compared with the Al2O3–Y2O3-doped SiC ceramics, the Al4C3–B4C–C-doped SiC ceramics had higher densities, lower fracture toughness, and higher hardness. The fracture mode of the oxide-doped SiC was mainly intergranular, whereas the nonoxide-doped SiC exhibited almost complete intragranular fracture that was attributed to the higher interfacial bonding strength.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献