Author:
Tibbetts Gary G.,McHugh John J.
Abstract
This article discusses the mechanical properties of vapor-grown carbon fiber (VGCF)/nylon and VGCF/polypropylene composites. Fibers in the as-produced condition yielded composites with marginally improved mechanical properties. Microscopic examination of these composites clearly showed regions of uninfiltrated fibers, which could account for the unsatisfactory mechanical properties. The infiltration of the fibers by both polymers was improved by carefully ball milling the raw fiber so as to reduce the diameter of the fiber clumps to less than 300 μm. Properties of composites made with ball-milled material were improved in every respect. VGCF reinforcement in nylon slightly improved the tensile strength and doubled the modulus, while VGCF in polypropylene doubled the tensile strength and quadrupled the modulus compared to unreinforced material. Moreover, the composites were sufficiently improved that differences in fiber surface preparation became important. For example, air-etched fibers and fibers covered with low concentrations of aromatics produced polypropylene composites with significantly better mechanical properties than did fibers whose surfaces were heavily coated with aromatics. Both the tensile strength and the modulus of the composites fabricated with clean fibers exceeded theoretical values for composites made with fibers randomly oriented in three dimensions, indicating that the injection-molding process oriented the fibers to some extent.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference17 articles.
1. 12. Pederson T. , General Motors R&D Center, (personal communication).
2. 10. Tennent H.G. , U.S. Patent No. 5 171 560 (15 December 1992).
3. The strength of metal matrix composites
4. The elasticity and strength of paper and other fibrous materials
Cited by
168 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献