Tailoring Grain-Boundary Segregation to Control Mechanical Properties

Author:

Williams D. B.,Keast V. J.

Abstract

ABSTRACTRecent advances in our understanding of the role of the chemistry of grain boundaries in controlling the mechanical properties of materials (in particular intergranular brittle fracture) are reviewed. It is now possible in a modem field-emission gun (FEG) analytical transmission electron microscope (AEM) to measure the chemistry of sub-nanometer films of GB segregants while at the same time observing the effect (if any) on the bonding of the atoms within a nanometer of the boundary plane. This has been accomplished by the development of X-ray mapping (XRM) a powerful new tool for the study of segregation. For the first time, in the same instrument, on the same grain boundary, any changes in the boundary chemistry can be correlated with the occurrence or absence of brittle failure, which is often associated with boundary segregation. There is strong evidence that boundary segregation is extremely nonuniform, even in some strongly embrittling systems (e.g. Cu-Bi) and in these same systems, embrittling segregants introduce subtle but consistent changes in the bonding. Non-embrittling segregants (e.g. Ag in Cu) do not introduce detectable bonding changes.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3