Annealing Effects on Interfacial Fracture of Gold-Chromium Films in Hybrid Microcircuits

Author:

Moody N. R.,Adams D. P.,Volinsky A. A.,Kriese M. D.,Gerberich W. W.

Abstract

ABSTRACTIn this study, stressed overlayers and nanoindentation were used to study the effect of elevated temperature on the resistance to interfacial fracture of gold-chromium films in hybrid microcircuits. The samples were prepared by sputter deposition of gold films and chromium adhesive layers onto sapphire substrates. Some films were left in the as-deposited condition for testing. Others were annealed until either most or all the chromium adhesive layer had diffused from the substrate interface. Stressed overlayers and nanoindentation were then used to drive interfacial delamination and blister formation. From these blisters, interfacial fracture energies were determined using mechanics-based models modified for multilayer film effects. The results clearly showed that the chromium interlayers increased interfacial fracture energy. However, they showed an even greater increase in fracture energy after diffusion had reduced the continuous chromium adhesion layer to a solid solution of gold and chromium, suggesting two different mechanisms act to control resistance to interfacial fracture in these films.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3