Energy Dissipation in Interfacial Friction

Author:

Robbins Mark O.,Krim Jacqueline

Abstract

In order to gain a fundamental understanding of friction, one must understand how the energy associated with work performed to overcome the frictional force is converted into heat at the molecular level. One of the simplest possible geometries in which friction can occur, and thus be studied, is that of a fluid or crystalline layer adsorbed on the surface of an ideal, atomically flat crystal. This system is ideal for studies of “interfacial” friction—that is, friction attributable to atoms and molecules immediately adjacent to the plane along which sliding occurs. Moreover it is directly accessible to experiments with a quartz crystal microbalance (QCM) and to theoretical studies through analytic calculations or molecular-dynamics (MD) simulations. The geometry is vastly simpler than that of contact between macroscopic objects in which the friction necessarily reflects the collective behavior of a multitude of buried contacts. (See the article by T. Baumberger and C. Caroli in this issue.) It is also far simpler than a case in which shear occurs within the bulk of a material rather than being confined to an interface. (See the article by D.A. Rigney and J.E. Hammerberg in this issue.) Nonetheless even in this simple geometry, friction can be far from negligible. A remarkable range of shear stresses, from 10−2 to 1010 N/m2, have been measured by a variety of techniques for wear-free geometries involving contact between crystalline interfaces.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3