Filler Pigments Designed for Recyclability

Author:

Passaretti June D.,Young Trudy D.,Herman Mick J.,Evans D. Bruce

Abstract

Printing and writing paper represents 30% by weight of all domestically made paper products. Today, however, less than 50% of that paper is recycled. The problem with waste paper from homes and offices is that it contains dyes, inks, and chemicals. If these additives are not removed properly—with no fiber degradation—the recycled paper will be of an inferior quality for writing and printing.Recycling, however, is the future. In 1990, 28.9 million tons of paper were collected for recycling, representing a collection rate of 33.5%. By the year 1995, the collection rate goal is 40%, with favorable economics supporting increased utilization of recovered paper. For example, a ton of paper made from 100% waste paper saves 17 trees, 4,100 kWh of energy (approximately 6 months of power used by the average home), 7,000 gallons of water, 60 pounds of air-polluting effluents, and 3 cubic yards of landfill.Two of the issues facing recycled fiber utilization are the cost and visual quality of the final sheet. Paper brightness, opacity, and printability are the industry's biggest concerns when comparing the quality of recycled fibers to that of virgin fibers. The common approach to increasing brightness is to add a white filler pigment such as precipitated calcium carbonate (PCC), ground limestone, clay, and/or titanium dioxide. Chemical optical brighteners have also been used, but their use will decline as consumers ask what impact the brightening chemicals have on the environment.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. Passaretti J.D. , U.S. Patent No. 5,156,719 (September 1992).

2. Broeren L.A. , in Reference 1, p. 71.

3. Passaretti J.D. , U.S. Patent No. 5,215,734 (June 1993).

4. Hagemeyer R.W , in Reference 6, p. 53.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3