Multicontact Solid Friction: A Macroscopic Probe of Pinning and Dissipation on the Mesoscopic Scale

Author:

Baumberger Tristan,Caroli Christiane

Abstract

In this article, we review the present status of experimental and theoretical work on friction at the interface between extended macroscopic bodies, rough on the micrometer scale. We show that systematic detailed studies of low-velocity friction using dynamical systems analysis, together with their shear response in the static state, provide a tool for investigating the physical processes taking place on the mesoscopic scale of real contacts between rough surfaces. This approach should shed light on the enduring question of the relationship between macroscopic friction and microscopic dissipative mechanisms. This still open issue has come back to the fore during the last decades, following considerable progress due to the development of “molecular tribometers.Bowden and Tabor pointed out that, because nominally flat surfaces are in general rough on small scales, the real area of contact Ar (Figure 1) is only a small fraction ϕ of apparent contact area A0. On the other hand, they postulated the existence of a stressσs characteristic of the shear strength of the interface between a given couple of solids. Hence the friction force:In this framework, the Amontons-Coulomb (AC) law F = μFN amounts to stating that Ar is proportional to the normal load FN where μ is the coefficient of friction.When considering soft metals, Bowden and Tabor noticed that ϕ ≪ 1 entails that the nominal local pressure p on the real contacts—of the order of FN/(ϕA0)–generally overcomes the yield strength Y so that the contacting asperities flow plastically until p = H 3Y, the “hardness” of the (softer) material. So, Ar = FN/H.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the Nanoworld;Key Engineering Materials;2010-07

2. Towards a theoretical picture of dense granular flows down inclines;Nature Materials;2007-02

3. Simulation Methods for Interfacial Friction in Solids;Surface Modification and Mechanisms;2004-04-30

4. New two-dimensional friction force apparatus design for measuring shear forces at the nanometer scale;Review of Scientific Instruments;2001-11

5. Scaling laws in the macro-, micro- and nanoworlds;European Journal of Physics;2001-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3