Spectral Data Storage Using Rare-Earth-Doped Crystals

Author:

Maniloff Eric S.,Johnson Alan E.,Mossberg Thomas W.

Abstract

Conventional optical data-storage techniques, such as magneto-optic disks and CD-ROMs, record a single bit of information at each particular substrate location. In order to produce the gigabyte-class storage substrates demanded by today's computers using such conventional technologies, access to tens of billions of individual material locations is required. This brute-force approach to optical data storage has produced impressive results. However, there is increasing interest in methods for more efficiently accessing storage materials. One approach is to record multiple bits at a single storage-material location. This can be accomplished by multiplexing the bits spectrally, using differing optical frequencies to record data bits. It has been realized for over 20 years that when certain materials are cooled to appropriate temperatures, typically below 20 K, the possibility of spectrally multiplexing large numbers of bits in a single material location arises. Although this approach, known as spectral hole-burning, has been proposed as a data-storage mechanism, to date it has primarily been used as a tool to study material properties. Rare-earth-doped crystals have been demonstrated to have properties that lend themselves to a variety of different spectral hole-burning-based data-storage applications. In this article, we will review the principles of spectral hole-burning, discuss some specific material systems in which spectral hole-burning is of particular interest, and describe methods for producing high-capacity, high-data-rate spectral memories.Spectral hole-burning, and spectral memories based on spectral hole-burning, depend on a material property referred to as inhomogeneous absorption line broadening. Materials exhibiting this property contain active atoms or molecules that individually respond to (absorb) very specific frequencies of light, but the collective response of all of the material's active atoms or molecules covers a spectral region that is broad compared with the response of a particular active atom or molecule. Inhomogeneous absorption line broadening is caused by local variations in the structure of the host, which in turn lead to variations in the electronic levels of the active atoms or molecules. The absorption linewidth of an individual absorber is referred to as the homogeneous linewidth Γh, and the absorption width of a collection of inhomogeneously broadened absorption centers is referred to as the inhomogeneous linewidth Γi. Application of monochromatic light to such a material has the effect of exciting only a very small subset of active absorbing atoms—those residing in the illuminated spatial volume within a homogeneous width of the exciting light's specific frequency. If the frequency of the imposed light is shifted, a different subset of active absorbing atoms in the illuminated volume responds.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference2 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surface Plasmon Excitation: Theory, Configurations, and Applications;Plasmonics;2023-11-03

2. From 3D to 2D and back again;Nanophotonics;2023-01-04

3. Nanomaterials for optical data storage;Nature Reviews Materials;2016-10-11

4. Holography and Optical Storage;Springer Handbook of Lasers and Optics;2012

5. Colour from Atoms and Ions;Colour and the Optical Properties of Materials;2011-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3