Real-Time X-Ray Scattering Studies of Surface Structure During Metalorganic Chemical Vapor Deposition of GaN

Author:

Stephenson G. Brian,Eastman Jeffrey A.,Auciello Orlando,Munkholm Anneli,Thompson Carol,Fuoss Paul H.,Fini Paul,DenBaars Steven P.,Speck James S.

Abstract

Vapor-phase processes such as chemical vapor deposition (CVD) and reactive ion etching are the primary methods for the production-scale synthesis and processing of many high-quality thin-film materials. For example, these processes are widely used in the microelectronics industry for synthesis and lithography of the various semiconducting, insulating, and conducting layers in devices. Understanding the means of controlling the microstructure and composition of these materials is of great technological interest. However a difficulty often encountered in developing vapor-phase processes is an undesirable dependence on trial-and-error methods for optimizing the many process parameters. These parameters include gas composition, flow rate, pressure, and substrate temperature, all of which are typically changing with time. This reliance on empirical methods can be attributed to the tremendous chemical and physical complexity of vapor-phase processes and the lack of appropriate in situ measurement techniques for the vapor-phase environment.We have initiated a program to apply synchrotron x-ray analysis techniques as real-time probes of film and surface structure during vapor-phase processing. X-rays have a combination of properties which makes them particularly well-suited for these studies. Unlike electrons, x-rays have a sufficiently low absorption to penetrate vapor-phase processing environments and chamber walls. Unlike visible light, x-rays have wavelengths and energies suitable for study of atomic-scale structure and chemistry. A growing number of in situ synchrotron x-ray investigations of film growth and processing demonstrate the power of these techniques.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3