Hydrogen Adsorption in Carbon Materials

Author:

Dresselhaus M.S.,Williams K.A.,Eklund P.C.

Abstract

Recent reports of very high, reversible adsorption of molecular hydrogen in pure nanotubes, alkali-doped graphite, and pure and alkali-doped graphite nanofibers (GNFs) have aroused tremendous interest in the research community, stimulating much experimental work and many theoretical calculations worldwide. The U.S. Department of Energy (DOE) Hydrogen Plan has seta standard for this discussion by providing a commercially significant benchmark for the amount of reversible hydrogen adsorption. This benchmark requires a system-weight efficiency (the ratio of stored H2 weight to system weight) of 6.5-wt% hydrogen and a volumetric density of 63 kg H2/m. If the encouraging experimental reports (summarized in Table I) are reproducible, it may be possible to reach the goals of the DOE Hydrogen Plan. On the other hand, the community still awaits confirmation of these experimental results by workers in other laboratories. Of additional concern is the fact that theoretical calculations have been unable to identify adsorption mechanisms compatible with the requirements of the DOE Hydrogen Plan.An economical, safe, hydrogen-storage medium is a critically needed component of a hydrogen-fueled transportation system. Hydrogen storage in a carbon-based material offers further advantages associated with its low mass density. Furthermore, fuel cell technology involving the conversion of hydrogen into protons, or hydrogen and oxygen into electric current, is being vigorously researched for both transportation and small power-plant applications.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 272 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3