Vapor Deposition of Low-Dielectric-Constant Polymeric Thin Films

Author:

Lu T-M.,Moore J.A.

Abstract

For devices with feature sizes below 0.18 μm, it is desirable to have materials with a dielectric constant below 2.5 as interlayer dielectrics. Polymeric materials are possible candidates. There are two main strategies to grow polymeric films. The most widely used method is the spin-on technique. The other method is by vapor deposition. Although vapor deposition is less common, it has several attractive features that look quite promising, especially when the wafer size becomes very large.There are several advantages to vapor-deposited polymers:(1) The deposition of the polymers is a dry process. It is solvent-free and does not produce waste. No remedial measures are necessary to take care of the waste. The process is attractive from both energy-conservation and environmental considerations.(2) They can provide an extremely uniform coating over a very large area. For 200-mm wafers, for example, one can achieve better than 2% uniformity for vapor-deposited parylene (a type of polymer to be described later) films. Similar uniformity can be expected for future 300-mm wafers.(3) Many vapor-deposited polymers possess superior gap-filling capability. Small vias and trenches of very high aspect ratios can be filled without voids.There are some shortcomings in vapor deposition of polymeric thin films. First of all, except for some special cases, processing issues for these materials are not well-studied. Manufacturing equipment is not well-developed.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Vacuum deposition rate measurements on thin polymer films

2. Yang G-R. , Ganguli S. , Karcz J. , Gill W.N. , and Lu T-M. (unpublished).

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3