Enhancing the Operating Life and Performance of Lead-Acid Batteries via Grain-Boundary Engineering

Author:

Palumbo G.,Erb U.

Abstract

Although conventional lead-acid batteries are considered a rather mature technology, significant research and development efforts are currently under way to enhance their performance and operating life. These efforts are being driven by the demands of both the automotive and stationary (or standby) market sectors. Both major markets have need of lead-acid batteries with higher energy density or reduced size and weight; however, the automotive sector is also driven to mitigate the cycle-life reduction of its “starter, lighting, and ignition” (SLI) batteries that results from rising “under the hood” temperatures in modern automobiles.The operating and cycle lives of leadacid batteries are limited by the resistance of the positive Pb-alloy electrodes to intergranular-degradation processes (i.e., corrosion, cracking, and creep). Figure 1 shows an example of near-through-wall cracking and some inter-granular corrosion (grain-dropping at surface) observed in a Pb-lwt%Sb positive battery grid following approximately four years of service. In addition to the breaching of grid electrical continuity by corrosion and cracking processes (as indicated in Figure 1), the relatively high homologous temperature of operation for lead-acid batteries (i.e., >0.6 Tm, where Tm is the melting temperature) promotes intergranular-creep processes that result in dimensional changes in the electrodes over time (i.e., grid “growth”); this causes adjacent plates to short, leading to reduced battery capacity.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference24 articles.

1. The search for better batteries

2. Zhang L. (private communication).

3. Synthesis, structure and properties of electroplated nanocrystalline materials

4. Warlimont H. , Olper M. , Ueberschaer A. , and Drafahl K. , U.S. Patent No. 5,672,181 (September 30,1997).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3