Aqueous Surface Chemistry and Corrosion of Minerals

Author:

Casey W.H.,Eggleston C.,Johnsson P.A.,Westrich H.R.,Hochella M.F.

Abstract

Nature is generous with complexity. The number of thermodynamic variables necessary to describe even simple stream chemistry can easily number to a hundred. Nevertheless, research on Earth materials remains exciting because of the vastness of geologic time and the huge scale of global processes. For example, even simple ion-exchange experiments have profound implications when considered in the context of global cycling of elements. Sodium exchange from seawater onto the 1.83 × 1016 g of river-borne clays removes 20–30% of the yearly sodium addition to the ocean. Research on Earth materials, although complex, is rewarding through the scale of the potential result.The surface chemistry of minerals is important for understanding natural mineral transformations and also because surface reactions help control the migration and degradation rates of pollutants in natural waters. These pollutants range from organic herbicides and pesticides, which leak past reactive soil horizons into groundwaters, to acid rain and heavy-metal leaching from mine tailings, sewage sludge, or coal fly ash. The importance of characterizing mineral surface chemistry is clear when one considers that 0.5 to 2% of usable groundwater in the United States is thought to be contaminated.This article reviews some simple surface chemistry of oxide and silicate minerals in water. We focus on the kinetics of mineral corrosion because this subject is interesting to both geochemists and materials scientists. The surface properties that make some solid oxides relatively inert to acid corrosion, for example, are also manifested in the rates of natural mineral weathering.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3