Grain Growth in Si3 N4-Based Materials

Author:

L.|Kang Suk-Joong,Han Sang-Moo

Abstract

The growth of Si3N4 grains in the usual sintering process occurs in an oxynitride liquid formed by reactions between sintering additives, impurity SiO2, and Si3N4. The shape of an Si3N4 grain in the liquid matrix is a hexagonal rod, although the aspect ratio (c/a) varies considerably, depending on the processing conditions and final crystalline forms of α or β. Figure 1 shows two types of microstructures observed in sintered Si3N4-based materials. The microstructure shown in Figure la is normal with unimodal grain-size distribution and that of Figure 1b is abnormal with a microstructure of exceptionally large elongated grains within fine matrix grains. When normal grain growth occurs, the microstructure varies little with sintering time, and the development may be described by a simple law. But, when abnormal grain growth occurs, a duplex grain structure with a bimodal grainsize distribution results; then no simple kinetic law can describe the microstructure development.The grain growth in the microstructures shown in Figure 1 exemplifies the growth of faceted grains in a liquid matrix. The grain growth in a matrix occurs via growth of larger grains and dissolution of smaller ones by material transport through the liquid phase. The driving force of the material transport for an individual grain is determined by the difference between its size and the critical grain size, which is invariant at the moment of observation. Since the driving force is usually low, the volume change of each grain is relatively slow and analogous to the crystal growth or dissolution in a liquid matrix under low super- or undersaturation. Therefore, knowledge of the growth behavior of faceted crystals under low supersaturation in a liquid may provide fundamental understanding of the grain growth in Si3N4-based materials.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference57 articles.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3