From Dynamics to Devices: Directed Self-Assembly of Colloidal Materials

Author:

Grier David G.

Abstract

Colloidal suspensions have been part of the repertoire of human industry since Paleolithic artists first dispersed pulverized minerals in rendered animal fat to make paint. Remarkably, colloidal suspensions' primary industrial applications have changed little in the 20 or 30 millennia since. People use colloidal suspensions to disperse materials into fluid media without dissolving them. Familiar examples include surface coatings such as paints and inks, and slurries used for paper making and powder transport. Dividing the material finely enough to disperse it sometimes instills the resulting particles with novel properties. Ancient Romans took advantage of quantum confinement effects in metallic and semiconductor nanoclusters to color glass—research on the mechanisms and applications of nanoclusters' properties is ongoing. In all of these cases, the dispersed material is the important agent; colloidal dispersal simply facilitates its exploitation. More recently, colloidal particles have been deliberately used to modify the rheological properties of their carrier fluids. For these applications, the material from which the colloidal particles are made is less important than how their dispersal influences the medium.This issue of MRS Bulletin focuses on a new class of applications for colloidal suspensions stemming from some particles' innate ability to organize themselves into beautifully ordered arrays. These colloidal crystals acquire interesting and useful properties not only from their constituent materials but also from the spontaneous emergence of mesoscopic order that characterizes their internal structure.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3