Plasma Generation for Materials Processing

Author:

Lieberman M.A.,Selwyn G.S.,Tuszewski M.

Abstract

Chemically reactive plasma discharges are widely used to process materials. A plasma is a primarily electrically neutral collection of free charged particles moving in random directions. The simplest plasma consists of electrons and one kind of positive ions. This article deals primarily with plasma discharges, which are plasmas having the following features:(1) They are driven electrically.(2) Charged-particle collisions with neutral-gas molecules are important.(3) There are boundaries at which surface losses are important.(4) Ionization of neutrals sustains the plasma in the steady state.One simple discharge consists of a voltage source that drives current through a low-pressure gas between two conducting plates or electrodes. The gas “breaks down” to form a plasma, usually weakly ionized—that is, the plasma density is only a small fraction of the neutral-gas density.The plasmas used in materials processing present an enormous range of charged-particle densities n and of temperatures Te, Ti, and T for electrons, ions, and processing gas, respectively. High-pressure (atmospheric) discharges are in near-thermal equilibrium (Te ~ Ti ~ T ~ 0.1–2 eV). Plasma temperatures are usually given in equivalent electron-volt units: One eV is equivalent to 11600 K through the Boltzmann constant. As discussed in the article by Boulos and Pfender in this issue of MRS Bulletin, these thermal discharges have high densities n ~ 1014-1019 particles/cm3 and are mainly used as heat sources. Low-pressure (1 mTorr–10 Torr) discharges are not in thermal equilibrium (Te ~ 2–5 eV ≫ Ti ~ T) and have low densities n ~ 109–1012 particles/cm3. As discussed in several of the following articles, these discharges are used as miniature chemical factories in which feedstock gases are broken into positive ions and chemically reactive etchants, deposition precursors, etc., which then flow to and physically or chemically react at the surface of a substrate.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference31 articles.

1. Selwyn G.S. , patent pending (1996).

2. Particle contamination characterization in a helicon plasma etching tool

3. Global model of Ar, O2, Cl2, and Ar/O2 high‐density plasma discharges

4. To view several photographs of trapped particle clouds, access the world-wide-web at the following address: http://harry.lanl.gov/bpw/contamination.html.

5. Magnetic nozzle design for coaxial plasma accelerators

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3