Biomineralization: Biomimetic Potential at the Inorganic-Organic Interface

Author:

Mann Stephen,Archibald Douglas D.,Didymus Jon M.,Heywood Brigid R.,Meldrum Fiona C.,Wade Vanessa J.

Abstract

The impetus for a biomimetic approach to mineralization stems from the need for increasingly sophisticated materials showing greater efficiency, specialization, and optimization—properties that ultimately depend on the control of molecular and supramolecular structure, and hence on methods of predictive chemical fabrication. Biomineralization is of central importance to the development of new approaches in materials science because, as discussed in the preceding article by Fink, the formation of bioinorganic materials, such as bones, shells, and teeth is highly regulated and responsive to the surrounding environment in a manner not achieved by conventional synthetic routes. Some possible areas of overlap are shown in Figure 1. As in the other areas of biomaterials discussed in this and next month's issue of the MRS Bulletin, there are two potential connections between the natural processes of biomineralization and the synthetic demands of materials science; first, the commercial exploitation of biologically derived, tailored materials, and second, the assimilation and adaptation of biological concepts and mechanisms into “artificial” materials design and synthesis. The former is an extension of biotechnology, by which microbial systems could be utilized to produce mineral powders. Some of the possible processes have been discussed elsewhere. In general, the use of biological sources is only applicable where the high production costs are offset by a marketable specialty product. While this is feasible for organic-based products such as polyhydroxybutyrate (see next month's MRS Bulletin) it imposes a severe limitation when we transfer the approach to biomineralization.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3