Materials for Magnetic-Tape Media

Author:

Onodera Seiichi,Kondo Hirofumi,Kawana Takahiro

Abstract

Magnetic recording has been responsible for the widespread and inexpensive recording of sound and video. Despite the availability of other means of storing data, such as optical recording and semiconductor devices, flexible magnetic-recording media have advantages such as (1) low cost, (2) stable storage, (3) a relatively high data rate, (4) a relatively short seek time, and (5) high-volumetric information density.The first commercially available magnetic-recording tapes were produced in 1947 by the 3M Company. Since that time, magnetic tapes have developed rapidly for use in audio, video, and digital-data recording systems.The linear-analogue technique is commonly used for most audio recorders. The magnetic tape is transported at a speed of several cm/s over a stationary head. On the other hand, helical-scanning rotary heads were developed for video recording, which afforded a high head-to-tape speed of more than several m/s and high recording-density capabilities. However high relative speed causes wear of the tape. The success of a tape in actual use depends critically on its tribological properties.Magnetic media are divided into two groups: (1) particulate media where magnetic particles are dispersed in a polymer binder with some additives and coated onto the substrate and (2) thin-film media in which monolithic, magnetic thin films are deposited onto the substrate in vacuum. The overwhelming preponderance of media fabricated to date have been coated media. However continuous demand for increasingly higher recording density has led to thin-film media.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3