Links of Science & Technology

Author:

DeCristofaro Nicholas

Abstract

On April 13, 1982, the Duke Power Company energized an experimental pad-mount distribution transformer in Hickory, North Carolina. The transformer, manufactured by General Electric, provided electric power to a local residence. That same month, the Georgia Power Company installed a similar transformer, made by Westinghouse Electric, atop a utility pole in Athens, Georgia. It supplied electricity for the exterior lights at the Westinghouse Newton Bridge Road plant. These devices shown in Figure 1 were unique among the nearly 40 million distribution transformers in service in the United States because their magnetic cores were made from an Fe–B–Si amorphous-metal alloy. This new material, produced by Allied-Signal (formerly Allied Chemical), was capable of magnetizing more efficiently than any electrical steel. By replacing grain-oriented silicon steel in the transformer cores, the amorphous metal reduced the core losses of the transformers by 75%.Although distribution transformers are relatively efficient devices, often operating at efficiencies as high as 99% at full load, they lose a significant amount of energy in their use. Because of the number of units in service, coupled with the fact that the core material is continuously magnetized and demagnetized at line frequency, transformers account for the largest portion of the energy losses on electric power distribution systems. It is estimated that over 50 × 109 kWh are dissipated annually in the United States in the form of distribution transformer core losses. At today's average electricity generating cost of $0.035/kWh, that energy is worth over $1,500 million.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in contemporary soft magnetic materials – a review;2023 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2023-06-05

2. A Curvature Sensor Utilizing the Matteucci Effect in Amorphous Wire;Sensors;2023-01-21

3. Influences of surface state on thermal stability and magnetic properties of Fe-Si-B-C amorphous alloy;The European Physical Journal Applied Physics;2023

4. Design of medium frequency transformer for dual active bridge DC/DC converter;8TH BRUNEI INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY 2021;2023

5. Technical and economical evaluation of distribution transformer with amorphous metal core in Indonesia;IOP Conference Series: Materials Science and Engineering;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3