Photonic Applications of Rare-Earth-Doped Materials

Author:

Steckl Andrew J.,Zavada John M.

Abstract

The elements of the lanthanide series, from Ce (atomic number 58) to Yb (atomic number 70), form a group of chemically similar elements that have in common a partially filled 4f shell. These so-called “rare earth” (RE) elements usually take on a 3+ ionic state (RE3+). Because the 4f electronic-energy levels of each lanthanide ion are shielded from external fields by 5s2 and 5p6 outer-shell electrons, RE3+ energy levels are predominantly independent of their surroundings.The characteristic energy levels of 4f electrons of the trivalent RE elements have been investigated in detail by Gerhard Heinrich Dieke and co-workers and were reported approximately 30 years ago. The Dieke diagram showing RE3+ energy levels is a familiar tool of scientists and engineers working with RE elements. However, the history of RE elements goes back to the year 1787 in the small Swedish town of Ytterby near Stockholm and to the gifted amateur mineralogist and military man Lt. Carl Axel Arrhenius. Arrhenius discovered an unusual black mineral in Ytterby (perceived initially as much rarer in occurrence and in concentration than the common ores or earths of aluminum, calcium, etc.). Many new elements were discovered by various chemists upon analysis of this black stone and others like it. The names given to these elements are variations of the location where the first discovery was made: yttrium, ytterbium, terbium, and erbium. The history of RE elements is fascinating and involves many other famous names in science: Berzelius, Gadolin, Bunsen.The properties of these elements and their multifaceted applications to science and industry are equally fascinating and have remained important to this day. Commercial applications of RE elements began after World War II, when their available quantity and purity were greatly enhanced by improved separation techniques developed as a part of the Manhattan Project. Until fairly recently, the main industrial application of RE elements has been in permanent magnets. The unpaired 4f electrons result in some RE elements having the highest magnetic moments of any element. The development and applications of RE magnets are reviewed in a very interesting article by Livingston3 in a previous MRS Bulletin issue. In this issue of MRS Bulletin, we have taken as our aim to review some of the properties and applications of RE elements relevant to photonics.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3